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Abstract. We have invoduced a cellular automaton to investigate selforganired criticality in 
the activity of neural populations. The model is composed of pulse-coupled integrate-and-fire 
neurons and srimulated by continuous driving. Under an appropriate condition, the system 
is found to exhibit a robust self-organized critical behaviour accompanied with the large-scale 
synchronized activities among the units. It indicates the close relationship between self-organized 
criticality and synchronization. 

1. Introduction 

It has been found by Bak, Tang and Wiesenfield (BTW) that many large dynamical systems 
tend to self-organize themselves into a statistically stationary state which is critical in the 
sense that both the spatial and temporal correlations obey power-law behaviour [l]. In 
contrast to the situation in the phase transition, this critical state is achieved over a wide 
range of the parameters of the system and no fine tuning is needed. BT;Y called this 
phenomena self-organized criticality (sOC) and expected that soc may explain the ubiquity 
of the fractal structure in nature. To illustrate this idea, BTW have introduced the well known 
sandpile model. It supposes a sandpile built up on a platform by adding sand randomly, 
a grain at a time. With the pile growing the slope will increase. Once the slope between 
two contiguous positions has reached a critical value, the pile will collapse and generate an 
avalanche. Eventually, the system evolves into a critical state where if any sand is added, 
there are avalanches at all length and time-scales which satisfy the power-law distribution. 
This dynamical attractor is the so-called SOC state. So far the concept of soc has been 
applied successfully in many realms of science, such as earthquake, forest fire, ecological 
systems and so on [Z-131. 

What interests us is investigating sOC in the activity of neural populations. There. are 
two motivations. Firstly, as one of the most complex systems, the human brain possesses 
more than lOI4 neurons and should exhibit soc under some suitable conditions [14, 151. In 
fact, the strong analogies between the dynamics of the soc model for earthquakes and that 
of neurobiology has been realized by Hopfield [15]. We hope that grasping themechanics of 
SOC processes in the brain will be helpful in understanding the higher functions. The second 
motivation concems the relationship between soc and synchronization. Synchronized 
patterns of neural activity in the frequency range of 30-70 Hz have been found generally 
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in the olfactory system, visual cortex and other brain areas [16-181. They are supposed 
to play important computational roles, for example, it provides a mechanism for sensory 
segmentation [16, 191. Since both soc and synchronization are characterized by the large- 
scale spatiotemporal correlation, they may be closely related. We will reveal this relation 
in a general framework. 

In this paper, we developed a cellular automaton which replicates the correlation 
structure of neural populations, that is, each cell behaves like an integrate-and-fire neuron 
and the coupling between them is the pulselike interaction 115, 20-231. Our model is 
shown to exhibit a robust soc behaviour over a wide range of the parameters, and the soc 
behaviour is accompanied by the luge-scale synchronized pattern of the activity of the units. 

Dan-mei Chen et a1 

2. The model and the result 

According to the current neurodynamical picture of the brain, the essential features of its 
function are the following [%I. When the membrane potential of a neuron exceeds the 
threshold, the neuron sends out signals with the form of action potentials and then returns 
to the rest state (the neuron fires). The signal is transferred by the synapses to the other 
neurons,.which has an excitatory or inhibitory influence on the membrane potential of the 
receiving cells according to whether the synapses are excitatory or inhibitory, respectively. 
The resulting potential, if it also exceeds the threshold, leads to the next step firing, and so 
on giving an avalanche. The non-firing neurons that are depolarized or hyperpolarized also 
relax to the rest state at a very slow rate compared to that in the firing case. 

For comparisons between the biological knowledge and the artificial model, it is essential 
to model realistically. To grasp the mechanism and to do the simulation, however, it 
is necessary to disregarded superfluous details. Our model organization is a compromise 
between these considerations. 

Let us consider a square lattice with nearest-neighbour coupling, which may represent 
a sheet of cells occurring in the neocortex [E]. With any cell i, we associate a continuous 
function Vi resembling the membrane potential. Vi < 0, vi = 0 and vi > 0 represent 
the neuron as hyperpolarized, in a rest state and depolarized, respectively. We choose the 
threshold V,h = 1. As to the property of the coupling (synapse), we randomly set them 
excitatory (or inhibitory) with weight P (or 1 - P). 

Each cell of the model behaves like an integrate-and-fire neuron. Suppose vi > 1, the 
neuron i then fires and V; decreases to zero. As a result of receiving the action potentials, 
the membrane potential of each of its nearest neighbours V,, is changed. Without loss 
of generality, we assume that the change of V,, is proportional to vi, i.e. CYV; or -pK 
depending on the coupling that is excitatory or inhibitory, respectively. Here CY and j3 are 
the propoaional constants. 

Also considering the slow relaxation of the non-liring neurons to the rest state, we get 
the redistribution of the membrane potentials after the firing of neuron i as 

vi + 0 

aV,, + CYV, (the coupling is excitatory) (1) 

where a is a constant smaller than 1 denoting the remains of V,,, due to its slow relaxation 
after the firing. 

In the recent study of soc, there are generally two different driving rules that trigger 
the relaxation of the system. One is the local perturbation which is applied to the model 

aV,, -,¶Vi (the coupling is inhibitory) V," + [ 
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whose dynamics satisfies a conservation law [25, 261. The other is the continuous driving 
(global perturbation) which is crucial to obtain soc in those with non-conserving dynamics, 
such as the models of e d q u a k e  and forest fire [3, 51. In the present model the dynamics 
is non-conserving owing to the slow relaxation and inhibition, so we choose the global 
perturbation to drive the model, that is, the membrane potentials of all neurons increase 
slowly and uniformly until one of them reaches the threshold and causes an avalanche; 
this process repeats~ again if the system quietens down. Note that the terminology ‘non- 
conserving’ refers to the redistribution of the membrane potential instead of the energy (see 
equation (1)). When applying continuous driving, we should distinguish two time-scales. 
One is defined by the duration between two successive avalanches. The other is the lifetime 
of the firing. By assuming the first time-scale to be much larger than the second, we separate 
them and regard the driving process as adiabatic: the system is allowed to quieten down 
before the global perturbation is used again. This adiabatic assumption has been generally 
used in many models including those of integrate-and-fire oscillators [3, 5, 20-231. Then 
the continuous driving may be understood as the system is receiving a slow continuous 
signal from the external or other parts of the  brain^ and, in this sense, continuous driving is 
also the natural choice of our model. 

As for the boundary condition, we choose an open one, i.e. h = 0 on the boundary. 
Finally the algorithm for simulating the above dynamical process is as follows: 

(i) Initialize the membrane potential of each neuron below V,h. then randomly set each 

(ii) Apply the global perturbation: finding out the maximum value Vma and adding 

(iii) If there exits any Vi > Vth, redistribute the membrane potentials according to (1). 
(iv) Repeat step (iii) until the system has quietened down. 
(v) Apply step (ii) again. 

Here, by using a random number generator, it is ensured that only one cell takes V,, 
in step (ii), which excludes the possibility of avalanche overlapping. 

Evolving according to the above rule, the system will eventually arrive at a statistically 
stationary state which only depends on the parameters but not on the initial conditions. 

Before showing the result, we would like to introduce another equivalent parameter. In 
the above, the couplings are differentiated as being excitatory and inhibitory with definite 
weights. Without causing any change in the statistical results, we can also regard all the 
couplings as equal by combining the excitatory and inhibitory effects together (this has been 
checked by our numerical calculation). Thus the change of V,. after the firing of neuron i 
is 

coupling excitatory or inhibitory with the weight P or 1 - P, respectively. 

Vth - Ifmax to all neurons. 

V,, -+ aVnn + bVi 

where b = Pa - (1 - P)@ includes both the excitatory and inhibitory contributions. 
Aftetwads we use b as the ‘effective’ parameter. 

We note that when a = 1, expression (2) is just the dynamical rule of the cellular 
automaton of an earthquake [31. 

To prove the soc of our system, we measured the probability distribution of the size of 
avalanches, where the size is the number of neurons fired once during the avalanche. Our 
results are obtained after IO6 drivings. Two different ways of varying the parameters have 
been investigated. One is changing 6 and setting a = 0.98 fixed, as shown in figure 1. 
When b = 0.1, the probability density decays exponentially with the size of the avalanches, 
which means there are .only localized behaviours. As b is increased (by increasing the 

(2) 
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Figure 1. The probability distribution ofthe size of 
avalanches for a square 35 x 35 sysrem is shown. 
The parameter ~1 IS fixed. When b = 0.1, the 
probability density decays exponentially. As b 
increases, there is a transition from localized to soc 
behaviour. The critical exponents forb = 0.22 and 
0.25 are obtained as 2.2 and 1.97, respectively. 

Figure 2. The similar result to figure 1 in the case of 
b = 0.25 and n = 0.98.0.92 and 0.85. The critical 
exponents are 1.97 and 2.91 for n = 0.98 and 0.92. 
respectively. 

weight P ) ,  the transition from localized to SOC behaviour occurs and the distribution of the 
size of the avalanches (S) satisfies the power law 

P ( S )  - s-' (3) 

where r is the critical exponent depending'only on a and b and is scaling invariant. r will 
decrease if b is increased further. In figure 1, it is shown that r = 2.2 and 1.97 when 
6 = 0.22 and 0.25, respectively. 

The other case is varying a and letting 6 = 0.25 instead, as shown in figure 2. We also 
obtained the transition from localized to SOC behaviour when Q is increased, and the critical 
exponent r will decrease when a is increased further. 

To observe synchronous activity, we calculated the distribution of the membrane 
potential after an avalanche with the system separately in the soc state and the state having 
localized behaviour, as shown in figure 3. It shows that the distributions both concentrate 
around a peak, which is different from the situation in the soc models with local perturbation 
where there are many peaks and the number seems to be 2d [U]. This result agrees with 
the work of Grassberger on the distribution of stress in the soc model of an earthquake 
[12]. It is very clear that the peak in the SOC state is much higher than that in the state with 
only localized behaviour, which indicates that in the soc state there are many more units at 
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Figure 3. The distribution of membrane potential after 
an avalanche is shown, when the system is separately in 
soc state (a = 0.98, b = 0.25) and the state having 
ollly localized behavioun (a = 0.85, b = 0.25). These 
distributions concentrate around a peak. 

the same active level after an avalanche. We call the activities of neurons synchronized if 
their differences in membrane potential are smaller thai 0.02. In figure 3, there are about 
57% units in the sOC state whose activities are synchronized. From thii point of view, the 
soc process has been accompanied with the large-scale synchronization among the units. 
This close relationship between soc and sychrony has also been found in the other systems 
[13, 231. ~ ~ 

3. Conclusion and discussion 

In conclusion we have introduced a cellar automaton which replicates the correlation 
structure of neural populations. The behaviour of the system is shown to depend on two 
parameters that describe the dynamics of the units. With the parameters increasing, the phase 
transition from localized to soc behaviour takes place. and the soc process is associated 
with the large-scale synchronization occumng among the elements. ’ 

Since synchronized activity pattems exist widely in neurobiological and other biological 
systems, much theoretical work has been done to grasp its mechanism 117-20,251. In our 
work it is interesting to find that the large-scale synchronization seems to be a coproduct 
of the soc process. As the system self-organizes itself into the soc state, its elements are 
also synchronized on a large scale. 

The present model is an immensely oversimplified one with many details of 
neurobiology ignored. Also the notion of synchronization in the model does not match 
the real situation of neural activity well. Ow work just indicates the close relation between 
soc and synchronization in a rather artificial framework. This is far from the final answer. 
Further work taking into account more details is needed. 
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